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criteria for cavitation 

A. T. C H W A N G *  

Division o f  Engineering and Applied Science, California Institute o f  Technology, Pasadena, California, USA 

(Received July 5, 1978) 

SUMMARY 

The effect of finite reservoir on the hydrodynamic pressure due to horizontal as well as vertical ground 
excitations has been studied. It is found that for horizontal accelerations the hydrodynamic pressure force 
decreases as the size of the reservoir decreases. The effect of vertical acceleration on the pressure force on a 
dam is simply to adjust the hydrostatic pressure by replacing the gravitational constant by an effective 
gravitational acceleration and this is true for any arbitrary shapes of the reservoir. A simple criterion has been 
presented in this paper which would enable dam engineers to determine whether a given earthquake could 
cause cavitation at the dam-water interface or not. 

I. Introduction 

An accurate determinat ion o f  the hydrodynamic  pressure exerted on the up-stream face o f  a 

dam during earthquakes is impor tant  in the design of  dams in seismic regions. During an 

earthquake a dam accelerates into and away from the water in the reservoir, and as a result, the 

water exerts a hydrodynamic  pressure, in addit ion to the hydrostat ic  pressure, on the dam 

surface. Depending on the magnitude o f  the earthquake, this hydrodynamic  pressure may,  at 

certain points,  exceed the hydrosta t ic  pressure. 

For  an infinitely long reservoir, Westergaard [6] first derived an expression for the hydro-  

dynamic pressure exerted on a dam by an incompressible, inviscid fluid in the reservoir as a 

result o f  horizontal  harmonic ground mot ion  in a direction perpendicular to the dam. He found 

that  this hydrodynamic  pressure is the same as i f  a certain body  of  fluid, often called the 'added 

mass',  was forced to move back and forth with the dam. This added-mass concept  has been used 

widely in fluid mechanics to calculate the increase o f  kinetic energy of  an incompressible, 

inviscid fluid surrounding an accelerating solid body  i f  the mot ion  is irrotational.  For  a rigid 

dam with vertical up-stream face, Westergaard found that  the added mass is confined in a 

volume bounded by  a two-dimensional parabolic surface on the up-stream side o f  the dam. In a 

discussion to Westergaard's [6] paper,  yon Kdrmdn [4] presented a simple momentum-balance 

method and obtained a distr ibution o f  the added mass, consequently the hydrodynamic  pres- 

sure, along the vertical up-stream face of  a rigid dam, very close to the Westergaard results. For  
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rectangular, rigid reservoirs, Chopra [ 1 ] showed that the hydrodynamic forces due to the ver- 
tical component of ground motion are comparable to those due to horizontal ground motion. 

By adopting a generalized version of yon K~irm~n's momentum-balance method, Chwang and 
Housner [3] solved the two-dimensional problem of the added mass effect due to a horizontal 
acceleration of a rigid dam with an arbitrarily inclined up-stream face of constant slope. They 
obtained the distribution of the hydrodynamic pressure along the sloping dam and presented 
explicit analytical formulas for evaluating the total horizontal, vertical and normal loads. They 
also pointed out an interesting feature that the total normal force acting on a dam was prac- 
ticaUy independent of the slope of the dam. In a subsequent paper, Chwang [2] presented an 
integral solution for the earthquake force on a rigid, sloping dam based on the exact, two- 
dimensional potential-flow theory. The results based on this exact theory were compared with 
those derived from the momentum-balance method. The two methods were found to be in 
reasonable agreement, especially for the total force exerted on the face of the dam. 

The effect of finite reservoir on the hydrodynamic pressure was investigated by Werner and 
Sundquist [5]. They considered the motion of a fluid in basins of various cross sections, such as 
rectangular, semi-circular, and triangular (with a 90 ° vertex angle) cross sections. Their solu- 
tions contain expressions both for the dynamic water pressure and for the displacements in the 
fluid. For in-phase movement of the dam and the reservoir boundary, their solution indicates a 
decrease in the hydrodynamic pressure force on the dam surface due to the finite size of  the 

reservoir. 
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Fig. 1 A typical longitudinal section of a reservoir. 
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Fig. 2 The model reservoir occupied by the fluid in the physical z-plane (a) is mapped conformally into the 
upper half ~'-plane (b). 
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The objective of this paper is to present a solution for the hytlrodynamic pressure force on a 
dam produced by the motion of water in a reservoir of more realistic shape (see Fig. 1) due to 
horizontal as well as vertical ground movements. The solution is derived from the exact, 
two-dimensional potential-flow theory. Possible cavitation at the upstream face of a dam when 
the dam accelerates away from the water is also discussed, and a simple criterion for deter- 
mining the incipient cavitation is given. 

2. Horizontal excitation 

Figure 1 shows a typical longitudinal section of  a reservoir. Neglecting the effect of bottom 
sediments on the motion of the fluid and approximating the reservoir bed by a straight line 
with an arbitrary angle 0(0 = art) relative to the horizontal, one has an idealized model of a 
dam-reservoir system (see Fig. 2a) suitable for the following theoretical analysis. Let the x-axis 
be in the horizontal plane and perpendicular to the up-stream face of the dam which is assumed 
to be vertical. The y-axis is assumed to point vertically upwards and the still-water level in the 
reservoir is at y = h. The rigid dam and the reservoir bottom are assumed to have a constant 
horizontal acceleration aa in the x-direction of sufficiently short duration so that the perturba- 
tion of the free surface is negligible. 

With z = x + iy ,  the conformal mapping 

h I" (1-~)  r ~  d~" 
z = e i ~  J l  , (1) 

v~- r(½-a) (~ -  1)" ~(~/~--S-[-1) 

given by the Schwarz-Christoffel theory, transforms the upper half ~-plane (~ = ~ + in) into the 
region occupied by the fluid in the reservoir (see Fig. 2). In equation (1), P represents the 
gamma function which is defined by the Eulerian integral of the second kind, 

P(z) = f o  t z -  l e -  t d t .  (2 )  

The points A and B in the physical z-plane are mapped into ~ = 0 and + 1 respectively. The 
points E and F at z = L + ih are mapped into the points of infinity in the ~'-plane along the 
negative and positive real axis respectively, where L denotes the length of the reservoir mea- 
sured along the free surface y = h, 

L = h cot an .  (3) 

There are three branch points, namely the origin, point one, and the point of infinity, in the 
complex ~'-plane for the integrand in equation (1). The branch cut which connects these three 
branch points lies on the positive real axis from zero to infinity. The positive branch is taken 
for the square-root function. 

Since the fluid in the reservoir is assumed to be incompressible and inviscid, the hydro, 
dynamic pressure p (in excess of the hydrostatic pressure) produced by the horizontal accelera- 
tion an of the dam and of the reservoir bed satisfies the Laplace equation 
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V 2p = O. (4) 

An analytic function f,  regular in the upper half C-plane, can be formed by adding to p its 
complex conjugate function q as 

[= p + iq, (5) 

where both p and q are real and q also satisfies the Laplace equation. On the free surface, which 
corresponds to the negative real axis in the ~-plane, the pressure p vanishes. On the up-stream 
face of the dam the pressure gradient is a constant, Op/On = - p a n ,  where B/On denotes the 
normal derivative. Along the reservoir bed, the boundary condition requires that Op/On = pan 

sin oar. Now, if s represents the distance measured along the boundary of the reservoir, which 
consists of the up-stream face of the dam AB and the reservoir bed BF, and s = 0 at z = 0, it 
follows from equation (1) that 

h P ( 1 - a )  1 d~ (0 < ~ < 1), (6a) 
s ( ~ ) - x / ' ~ ' - P ( ~ - a )  f~  ( 1 - ~ ) ' ~ ~ )  

h P ( 1 - a )  1 d~ (1 < ~ < oo). (6b) 

The Cauchy-Riemann condition for the analytic function f =  p + iq that Op/an = Oq/Os gives 
q = -pans along AB and q = pans sin air along BF. Therefore, the boundary conditions for f(~) 
along the real axis in the ~-plane are 

Re  f(~') = 0 (-,~, < ~ < 0) ,  (7a) 

Im f(~)  = -pans  (0 < ~j < 1), (7b) 

Im f(~) = pans sin onr (1 < ~ < oo), (7c) 

where s is given by equation (6), Re  and Im denote the real and imaginary parts respectively. 
In order to solve for f(~), it is convenient to introduce another analytic function g(~) by 

g(D = ~- ~ [(~), (8) 

where the positive branch is taken for the square-root function. For this new function g(~')the 
boundary conditions (7a)-(7c) become 

lm  g(~) = 

0 (~ < 0) ,  

-pans(D~-" (o < ~ < 1), 

pan s(~') sin alr~'--~ (~" > 1), 

(9) 
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for real ~'. An analytic function g(~), which is regular in the upper half ~'-plane and vanishes at 
infinity, can be obtained by the Poisson integral formula to give 

1 ['** Im g(~)d~ 
g(~') = ~ J_** tj-~" (10) 

Substituting equations (8) and (9) into (10), one has 

f ( [ )  = phaa~ ~ s(~)d~ sin t~Tr f ?  s(~)d~ (11) 
~r ~-~ ( ~ - D  ~ ( ~ - D  " 

The real part of f(~) for real ~ with 0 < ~" < 1 gives the hydrodynamic pressure on the dam, 
which may be obtained by substituting equations (6a) and (6b) into (11) to give 

p(~j)=Tra/2i,(½._a ) log t-~ ~'-~-~ ( 1 - t ) a x / 7 ( l - t )  

¢: I 1 - sin t~r log , -- (0 < ~ < 1), 
t~ ~-~ ( t -  1) ~ 

(12) 

where ~ denotes the Cauchy principal value. The second term in the square bracket of equation 
(12) may be simplified by differentiating it with respect to ~ as 

- sin a'tr ~--~ fl** 
dt 

( t - 1 ) ~ + l l 2 ( t - ~ )  

which can be reduced, through a contour integration in the complex t-plane around a branch 
cut between one and inf'mity and along a circle of large radius, to 

rr tan ~rt 
i 

( 1 - 0 ~  x / ~ l - ~ )  

Integrating the above with respect to ~ and making use of equation (6a), one obtains the 
pressure coefficient Cp, 

p (0 v(1-a)  d:~ [ t~ + ~ at Cp (0 log 
~ , ,h  . 3 / ~ r ( ½ _ ~ )  :)"o I - t )  t-~ - ~-~ ( l - t )  a 

(0 < ~ < 1), (13) 

where s(~) is given by equation (6a). 
Along the up-stream face of the dam, the vertical height y is the same as the distance s 

measured from the bottom, 
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y (~) = s (~) (0 < ~ < 1). (14) 

Therefore the pressure distribution on the dam surface can be computed as a function o f y  with 

being a parameter through equations (6a) and (13). Figure 3 shows the relationship between 

the pressure coefficient Cp and the normalized vertical distance y /h ,  as computed from equa- 

tions (6a) and (13), for several fixed inclination angles of  the reservoir bed 0 (0 = oar) from 0 ° 

to 80 °. It can be seen from Fig. 3 that for fixed height y /h ,  the pressure coefficient Cp 

decreases as 0 increases; for fixed angle 0, Cp increases as y /h  decreases and Cp reaches its 

maximum value at y = 0. In particular, for 0 = 0°(a = 0), equation (13) gives 

Cp(1)=  8G/~ 2 = 0.7425,  (15) 

where G = 0.915965 ... is Catalan's constant. This result agrees exactly with the Westergaard [6] 

result for an inffmitely long reservoir (see also Chwang [2]). 

The total normal force on the dam can be found by integrating equation (13) in the physical 

z-plane as 

as 
Fh = pUs = p(~) - ~  d~, (16) 

or in the dimensionless form as 

Fn r(1 _a) f l  G (~)d~ 
Chx - - -  - , (17) -Io ( l_~)a ~(~-~__~) 

where Cp(~) is given by equation (13). The numerical result computed from equation (17) is 

shown in Fig. 4 in which the force coefficient due to horizontal acceleration, Chx, is plotted 

versus the inclination angle of  the reservoir bed, 0, or the reservoir depth-to-length ratio h/L.  It 
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o o.i o.z 0.3 0.4 o.s o.e o.;' o.e 

Cp 
Fig. 3 The pressure distribution on the up-stream face of a dam for fixed inclination angle 0 of the reservoir 
bed from 0 ° to 80 ° . 
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Fig. 4 The total hydrodynamic pressure forces Chx and Cvx, due to horizontal and vertical accelerations 
respectively, versus the inclination angle 0 of the reservoir bed or the reservoir depth-to-length ratio h/L. 

is noted from Fig. 4 that for an infinitely long reservoir(0 = 0 ° or h/L = 0), Chx reaches a 

maximum value o f  0.543 which is the same as Westergaard's result. It starts to decrease almost 

linearly as 0 increases, and it becomes zero when 0 is 90 ° as it should be since there is no fluid 

in the reservoir then. 

3. Vertical excitation 

If  the rigid dam and the reservoir bed experience a constant vertical acceleration av in the 

y-direction during an earthquake, then the boundary conditions for the hydrodynamic pressure 

p become (see Fig. 2a) 

ap 
= 0 (x = 0) ,  (18a) 

ax 

ap ap 
sin ~n -~x - cos art -~y = pay cos aTr (y = x  tan aTr), (18b) 

p = 0 (y = h) .  (18c) 

The solution of  equation (4) satisfying the above boundary conditions (18a)- (18c)  is simply 

p = p a y ( h - y ) ,  (19) 

which has the same expression as the hydrostatic pressure except that the gravitational constant 
g is replaced by the constant vertical acceleration av. Therefore the effect of  vertical accelera- 
tion on the pressure force acting on a dam is simply to adjust the hydrostatic pressure by 
replacing the gravitational constant g by an effective gravitational acceleration (g + av). 

The total normal force on the dam is obtained by integrating equation (19), 
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Fv = f ~  pdy oavh 2 . (20) 

Thus the dimensionless force coefficient Cvx becomes 

F~ 
Cvx - = 0.5, (21) 

pavh 2 

which is independent of the inclination angle of the reservoir bed 0. The value of Cvx is also 
shown in Fig. 4 for comparison. It can be seen from Fig. 4 that if the vertical acceleration av is 
of the same magnitude as the horizontal acceleration ah, the total hydrodynamic pressure force 
due to av would be greater than that due to an for 0 > 7 °. Hence the hydrodynamic effect due 
to the vertical excitation during an earthquake may be equally important as that due to the 
horizontal component of the ground acceleration. 

It should be noted that if the up-stream face of the dam and the reservoir bed take any 
arbitrary configuration other than that shown in Fig. 2a, the hydrodynamic pressure due to 
vertical ground acceleration av would still be given by equation (19) since it satisfies the 
boundary conditions 

p = 0 (y = h ) ,  (22a)  

(~" "V )p = - pavny (on S), (22b) 

where S denotes the boundary of  the reservoir and h"= (nx, ny) is the outward normal vector 
along S. 

4. Possible cavitation 

If the rigid dam together with the reservoir bed moves with a constant horizontal acceleration 
aa in the negative x-direction (away from the water) or with a constant vertical acceleration av 
in the negative y-direction (see Fig. 2a), then the resulting hydrodynamic pressure p would still 
be given by equation (13) or (19) respectively but with a sign change, that is, the hydrodynamic 
pressure becomes negative, since the problem is linear. Should the hydrodynamic pressure 
become negatively so large that the total absolute p~essure (hydrodynamic plus hydrostatic and 
atmospheric pressure) becomes negative, cavitation could take place at the up-stream face of 
the dam because the water in the reservoir cannot sustain any tension. To see that cavitation is 
possible, it is convenient, without loss of generality, to consider the case in which the reservoir 
is infinitely long (an = 0) and the dam has a constant acceleration aa in the negative x-direction. 
For the present purpose it is quite sufficient to approximate the hydrodynamic pressure by the 
result derived f~om the momentum balance method (see yon K~rmfin [4] and Chwang [2]). 

Thus 

1 
p = -  v r  ~ paa h 
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Denoting the horizontal acceleration a h by 

ah = kg , 

where k is the earthquake intensity, one has the total absolute pressure Ptotal, 

(24) 

P t o t a l - -  

where Pa is the atmospheric pressure. 
The criterion for cavitation to occur is that 

Ptotal <~ 0.  (26) 

It follows from equations (25) and (26) that 

k V l _ ~ 2 + y  Pa (27) ~ > 1 +  p - ~ .  

The left-hand side of the above inequality has a maximum value of x /1  +(k2 /2)  at 
y/h = x/2/ (2  + k 2) since its first derivative with respect to y vanishes and its second derivative 
with respect to y is negative there. Therefore, in order to assure that cavitation will take place 

on the up-stream face of a dam one must require 

V~I k2 Pa +-T >l +)-%. (28) 

Morris Dam, located about 10 miles from Pasadena, California, is a large concrete gravity 
dam with a height of 328 ft. This dam could serve as an example for numerical calculations. For 

estimates, the following values are taken: Pa = 14.7 x 144 x 32.2 poundals/ft 2 (1.01 x 106 
dynes/cm2); p = 62.4 pounds/ft a (1.00 gram/cm3); g =  32.2 f t / se J  (981 cm/sec2); and 
h = 328 ft (1.00 x 104 cm) so that pa/(pgh)= 0.103. It then follows from the inequality (28) 

that 

k > 0.658. 

The above value for the earthquake intensity falls within the range of real earthquakes in 
Southern California. Detailed calculation on incipient cavitation and its damage on the up- 
stream face of a dam will be presented in future papers. 

5. Conclusions 

The effect of finite reservoir on the hydrodynamic pressure due to horizontal as well as vertical 
ground excitations has been studied. It is found that for horizontal accelerations the hydro- 
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dynamic pressure force decreases as the size o f  the reservoir decreases. The effect o f  vertical 

acceleration on the pressure force on a dam is simply to adjust the hydrostat ic  pressure by  

replacing the gravitational constant  by  an effective gravitational acceleration and this is true for 

any arbitrary shapes o f  the reservoir. I f  the vertical acceleration is o f  the same order o f  

magnitude as the horizontal  acceleration, it will cause the water  to exert a hydrodynamic  

pressure force on a dam with a vertical up-stream face as large as that  due to the horizontal  

acceleration. 

A simple criterion has been presented in this paper which would enable dam engineers to 

determine whether  a given earthquake will cause cavitation at the dam-water interface or not. 
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